ELECTROHYDRODYNAMIC INSTABILITY OF A WEAKLY
CONDUCTIVE LIQUID LOCATED BETWEEN SPHERICAL
ELECTRODES IN THE PRESENCE OF WEAK INJECTION
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High-voltage conductivity of liguid dielectrics may be produced by charge injection from electrodes
[1-6]. The charges flowing from the electrodes have the same sign as the electrode polarity. The electrode
region becomes charged, causing Coulomb forces to appear, directed in the direction away from the elec-
trode. There thus develops an unstable equilibrium state, and at sufficiently high electric field intensities
the liquid is set in motion [3-6]. The present study will obtain criteria for the stability of equilibrium of a
weakly conductive liquid located between two spherical electrodes for cases of unipolar injection from the
outer or inner electrodes.

1, Formulation of the Problem, Let the electrode radii be Ry, Ry (R; < R,) with an applied potential
difference U = const, The space charge q = ny —n isformedinthe liquid due to injection of charges from
the electrodes, so that conductivity may be expressed in the form o= wn; + uyny, where ny, n, are the
values of the space~-charge densities injected by the inner and outer electrodes, respectively, and uy, u, are
the charge mobilities. We thus assume that the injection current is significantly higher than the current pro-
duced by impurities and dissociation [1-3].

The motion of the weakly conductive polarizable ihcompressible liquid is described by the electrohy-
drodynamics equations [6, 7]

p(@vldt + (vglv) = —yp + nAv + ¢E, divv =0,
div ¢E = 4ng, 10t E = O anyot + div j; = 0, 1.1)
Ji = (=B + nyv (i = 1,2),

where j;, j, are the respective densities of the currents produced by the injected charges, 7, dynamic vis-
cosity; and p, total pressure [7].
The boundary conditions for Eq, (1.1) have the form

v’—"=Rx_-Rs=Os_ e=0,lii|=j1 at r=Ry; 9=U, |j2|=]j. at r=R,. (1.2)

Equality to zero of the velocity is a consequence of the adhesion condition; the remaining conditions follow
from specification of the potential and injected current densities on the electrodes,

2, Equilibrium State, The boundary-value problem describing the equilibrium state consists of system (1.1)
at v=0, 8/87 = 0 and boundary conditions (1.2). We introduce a spherical coordinate system (r, 0, @),
with origin at the center of symmetry. The solution describing the equilibrium state will be sought in the
form

E, = (Eyn), 0, 0), ny = ny(n)- (2.1)
Here and below we consider index i as taking on the values of 1 and 2.
Placing {2.1) in the equilibrium equatiori and using (1.2), we obtain a solution in the form

(2.2)
. 2 . p2 . p2
. 8aDr ag, 1,85 _ I By — iy By
= —_—— Ny = — D=
£, l/ + 3ea 2]{4, Eo dr’ i uiron’ Uy, ’

where the constant @ is detennmed from boundary conditions (1.2) for the potential ¢y We note that the
constant @ has the dimensions of electric field intensity, and in the absence of injection (j; = 0) then a =
= UR,/IR,(R; — Ry)]. Thus, if we assume that the injection is weak
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ksm

= 3E2R<<1D_~.-' - {2.3)
then Eq. (2.2) may be Slmphfled by expanding in a series in the small parameter p = uy — yy and retaining

terms linear in u

E,= E‘Rg1 ) mie= i (1=
= (g ) T E R “E) (2.4)

3. Study of Stability. We will consider the stability of the equilibrium state described by Eq. (2.4) with
respect to infinitely small perturbations [8]. Representing the perturbed state by a velocity e*tv(r), pressure
Po + €'p(r), electric field intensity E, + e*“e(r), and space charges ny + ¢¥g,(r), with consideration of Eq.
(2.3) for the perturbation, we obtain the following system of linearized equations:

AoV = — Vp + nAV — (g, — q,) E,Ri/r’;, divv =0,
Agi — (— 1)1 wE RY/r® dqifdr + dnigJdrev, = 0. ' 8.1
Using Eq. (2.3), it can be shown [4] that the boundary conditions for system (3.1) have the form
Vi=r; =0, ¢i|r=pr; = 0. (3.2)
We will study the stability with respect to monotonic-type perturbation {A a real number}, Then on the sta-

bility boundary (A = 0) Eq. (3.1) and boundary conditions (3.2) define a boundary problem for elp‘envalues of
E,. If we seek the eigenfunctions in the form

v, =vi(r) Tou (0/12 — g, 6, 0),
UVt = F —o= -l/-' (UQH +il}9) =yt (r) Tz_i'l.” (H/Q — @1, er 0)7
p=p1(r) Ton (/2 — 1, 8, 0), @i = giz (r) Toa (/2 — gy, 6, 0),
where Trm (w1, 0, @) (—I<n.m<l; 1=1,2,3,...) are generalized spherical functions, then in analogy with

[9] it can be shown that the critical intensity E;,, at which the liquid loses stability, is defined by the follow-
ing eigenvalue problem for E

110%01 =—1{l+1) Elﬁi/r:’"(%l — 11, (3.3)
dgi/dr = (— 1)ir/(E\Riu;) - dniy/dr-vy; (3.4)
vy =dp'dr=20,¢; =0 a r=R,,
where
o d'3 L 24 10+
Uy = rvg, Dl d —1——}—-6—{—— ’.2 .
£ dimensi i / 0, 0 PRIGET o pRuED
We transform to the ensionless variables ¢ = r/R,, v =161, V; =g, lm, Vi = qu S, and per-

form a substitution t = 1/s, w(s) = vQ1/s), vi = 'yg(l/s). Then the problem of Eqs, (3.3}, (3.4) will be equivalent

to the following boundary-value problem for eigenvalues of K, if the value K, is specified, and for K,, if Kj
values are specified:

sLis'Lyw — 4nll —+ 1)Ky — Koy, dyi'ds = (—1)iw.s%; (3.5)
w=dwds=0,v; =0 at s=n, (3.6
&, i By (R, — 1,05 ) K, = 1285 (7, 78w, — iy R3,) .
where L, =——= By==h = 1< shy =1, K, = /] %, Pt ; ol B, P Ragd v " We will consider

two cases of unipolar injection; from the inner electrode (j; =0); from the outer electrode (j; = 0), In these
cases Egs. (3.5), (3.6) may be reduced to a problem of determining characteristic values Ay of integral equa-
tions with positive integrands



TABLE 1

h
\ 0.05 0.1 0.2 0,3 0.4 0.5
2 478.1077 | 150.407% | 582.10 0,639
3 501.1077 | 148.107 | 505.107 | 0,470 2,990
4 571.10°7 | 163.107 | 534.10* 0,445 2,465 12,76
5 185.1075 | 600.107 0,475 2,363 10,81
6 2,471 10,14
7 2,703 10,18
TABLE 2
h
1 0.03 0,1 0,2 0.3 0,4 0,5
2 144.407 | 415.10°5 | 194.10+4 0,264
3 200-107 | 505.107% | 181.10 0,198 1,497
4 281.107 | 663.10°% | 210.107 0,195 1,250
5 382.1077 | 867.107¢ | 261.107 0,218 1,220 6,37
6 1,305 6,03
7 1.468 6,42
1
oo
w(s) = | G (s, )0, (3.7
1 .
where
;2 8 ;2 pd
A I
hi=4al(l+ )By By = —+2— By, = —2 2
! ( )Bis By s‘E1 3ufn' - lel"*u?;n
t 1
Gy (s, 1) = | G(s, ) Gy(s, 1) = | G(s, 8 dE;

h t

Gls, ) ‘is Green's operator function, defined by the differential expression sLls4Ll and boundary conditions
w=dw/ds = 0 at s = hj.

Calculation of the smallest characteristic values 7\11 was performed by the iteration method [9] with a

relative error < 0.1%. Tables 1 and 2 present the results of calculating the functions By = By(h, I), By = By(h, 1)
for various values of h and 7. The critical values Bj, are determined from the condition Bj = min Bj(h,

121
D). For B < B;j, the liquid is in equilibrium, while for Bj > Bj, it goes into motion, The calculations also
showed that in both cases for h < 0, 1 the critical motions correspond to I = 2, With increase in h the
corresponding ! values increase by one, :

We will present some numerical estimates, In polar liquids in the presence of semipermeable mem-
branes, injection may occur even at low voltages [3-5]. The densities of the injected currents can then reach
significant values (up to 100 pA/cm? in nitrobenzol [3]). We will estimate the magnitude of the eritical cur-
rent density for the inner electrode, assuming that the electric field intensity E; varies over the limits E; =
50-100 kV/cm, with ion mobility of the order of magnitude of 10~ cm?/V .sec [2, 3], viscosity 1 = 0.2 P,
g€ = 2 for h= 0.1, Ry = 1 cm. On the stability boundary K; = K;, = 0.0015, whence after substitution in
the expression for K; of the indicated values we obtain j = 6.45-8,16 nA/cm, with py = 0.1-0,05, To de-
termine the exact value of the critical electric field intensity near the inner electrode (and also the density
of the injected current at the electrode) it is necessary to know the dependence j = j(E) [1~3]. For example,
for steel electrodes and well purified n-hexane the cold emission current density dependence on field inten-
sity at the cathode has the form [1] ' ‘ '

i = aB®? exp (—b/E),
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where @ =5.1-10% A/V?, b= 2,66+10° V/cm. If we assume [2, 10] that v, = 10~% cm?/V - sec, 7 = - 0.0029
P, £ = 2, h= 0.1, Ry = 1 cm, then E,, = 38 MV/cm, with p; = 0.0036.
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